煤炭工程 ›› 2024, Vol. 56 ›› Issue (4): 157-163.doi: 10. 11799/ ce202404024

• 研究探讨 • 上一篇    下一篇

基于轻量化YOLOv7的井下高压场景安全识别研究

柏跃屹,华心祝   

  1. 安徽理工大学 安全科学与工程学院,安徽 淮南 232001
  • 收稿日期:2023-11-21 修回日期:2024-01-03 出版日期:2023-04-20 发布日期:2024-12-09
  • 通讯作者: 柏跃屹 E-mail:scott_bai@163.com

Research on safety identification of underground high-pressure scene based on lightweight YOLOv7

  • Received:2023-11-21 Revised:2024-01-03 Online:2023-04-20 Published:2024-12-09

摘要:

为了使杨柳煤矿安全监测平台精准快速地识别机电人员高压作业场景中存在的不安全行为,以井下中央变电所为例,聚焦绝缘护具佩戴情况设计安全识别框架。基于YOLOv7 目标检测算法引用部分卷积(PConv),提高模型在处理遮挡或缺失画面的鲁棒性和泛化能力; 融合快速神经网络结构(FasterNet),降低计算冗余优化检测性能; 最后融合时间空间注意力模块(CBAM),提高算法的特征提取能力。实验结果表明: 轻量化处理后较原模型体积缩小30.5%, 计算量减少23.7%,识别平均精度可达97.3%, 单张图片检测速度提升38.1%。在复杂背景下小目标检测任务中有效地解决了漏检问题。

关键词: 井下高压作业 , 煤矿机电人员 , YOLOv7-tiny , 绝缘护具 , 部分卷积

Abstract:

In order to effectively identify the unsafe behavior of underground coal miners, we designed an underground personnel behavior intelligent detection system based on lightweight OpenPose algorithm. The lightweight OpenPose network was used to obtain the coordinates of key points of human skeleton from infrared camera data, and then different recognition algorithms were designed to detect fall, climb and push postures. Experimental results showed that, the algorithm achieved a speed of 30 f/ s and the overall accuracy was 86. 35%. After deploying the detection model to industrial computers and integrating it with alarms, accurate real-time detection and timely alarm notifications for unsafe behaviors was achieved.

中图分类号: